Pengantar Quantum Computation
Mata Kuliah : Pengantar Komputasi Modern #
Kelas : 4IA21
Dosen : Natallios Peter Sipasulta
Anggota Kelompok :
- Dany Permadi 51415593
- Dimas Mulia Putranto 51415930
- Johan Alim 53415579
- M Prasetyo Nugroho 53415941
- Widianto Saputro 57415131
- Yuda Aditya Pangestu 57415303
A. Pendahuluan
Sebelum membahas tentang pengertian Quantum Computation, terlebih dahulu dibahas adalah mengenai sejarahnya. Bermula pada tahun 1970-an pencetusan atau ide tentang komputer kuantum pertama kali muncul oleh para fisikawan dan ilmuwan komputer, seperti Charles H. Bennett dari IBM, Paul A. Benioff dari Argonne National Laboratory, Illinois, David Deutsch dari University of Oxford, dan Richard P. Feynman dari California Institute of Technology (Caltech).
Feynman dari California Institute of Technology yang pertama kali mengajukan dan menunjukkan model bahwa sebuah sistem kuantum dapat digunakan untuk melakukan komputasi. Feynman juga menunjukkan bagaimana sistem tersebut dapat menjadi simulator bagi fisika kuantum.
Pada tahun 1985, Deutsch menyadari esensi dari komputasi oleh sebuah komputer kuantum dan menunjukkan bahwa semua proses fisika, secara prinsipil, dapat dimodelkan melalui komputer kuantum. Dengan demikian, komputer kuantum memiliki kemampuan yang melebihi komputer klasik. Pada tahun 1995, Peter Shor merumuskan sebuah algoritma yang memungkinkan penggunaan komputer kuantum untuk memecahkan masalah faktorisasi dalam teori bilangan.
Sampai saat ini, riset dan eksperimen pada bidang komputer kuantum masih terus dilakukan di seluruh dunia. Berbagai metode dikembangkan untuk memungkinkan terwujudnya sebuah komputer yang memilki kemampuan yang luar biasa ini. Sejauh ini, sebuah komputer kuantum yang telah dibangun hanya dapat mencapai kemampuan untuk memfaktorkan dua digit bilangan. Komputer kuantum ini dibangun pada tahun 1998 di Los Alamos, Amerika Serikat, menggunakan NMR (Nuclear Magnetic Resonance).
Quantum Computation merupakan alat hitung yang menggunakan mekanika kuantum seperti superposisi dan keterkaitan, yang digunakan untuk peng-operasi-an data. Perhitungan jumlah data pada komputasi klasik dihitung dengan bit, sedangkan perhitungan jumlah data pada komputer kuantum dilakukan dengan qubit. Prinsip dasar komputer kuantum adalah bahwa sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, dan bahwa mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Dalam hal ini untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika baru yang sesuai dengan prinsip kuantum.
Quantum Computer dapat memproses jauh lebih cepat dari pada komputer konvensional. Pada dasarnya, quantum computer dapat memproses secara paralel, sehingga berkomputasi jauh lebih cepat. Quantum Computer dapat jauh lebih cepat dari komputer konvensional pada banyak masalah, salah satunya yaitu masalah yang memiliki sifat berikut:
Satu-satunya cara adalah menebak dan mengecek jawabannya berkali-kali
Terdapat n jumlah jawaban yang mungkin
Setiap kemungkinan jawaban membutuhkan waktu yang sama untuk mengeceknya
Tidak ada petunjuk jawaban mana yang kemungkinan benarnya lebih besar: memberi jawaban dengan asal tidak berbeda dengan mengeceknya dengan urutan tertentu.
Tentang quantum gates dan algoritma shor , Algoritma Shor didasarkan dari sebuah teori bilangan: fungsi F(a) = xamod n adalah feungsi periodik jika x adalah bilangan bulat yang relatif prima dengan n. Dalam Algoritma Shor, n akan menjadi bilangan bulat yang hendak difaktorkan. Menghitung fungsi ini di komputer konvensional untuk jumlah yang eksponensial akan membutuhkan waktu eksponensial pula. Pada masalah ini algoritma quantum shor memanfaatkan pararellisme quantum untuk melakukannya hanya dengan satu langkah. Karena F(A) adalah fungsi periodik, maka fungsi ini memiliki sebuah periode r. Diketahui x0mod n = 1, maka xr mod n =1, begitu juga x2r mod n dan seterusnya.
B. Entanglement
Quantum entanglement adalah fenomena mekanika kuantum dimana kuantum menyatakan bahwa dua atau lebih objek harus dideskripsikan dengan referensi antar objek, meskipun objek-objek tersebut tidaklah berkaitan secara spasia. Quantum entanglement terjadi ketika partikel seperti foton, elektron, molekul besar seperti buckyballs, dan bahkan berlian kecil berinteraksi secara fisik dan kemudian terpisahkan; jenis interaksi adalah sedemikian rupa sehingga setiap anggota yang dihasilkan dari pasangan benar dijelaskan oleh kuantum mekanik deskripsi yang sama (keadaan yang sama), yang terbatas dalam hal faktor penting seperti posisi, momentum, perputaran, polarisasi,
Secara keseluruhan, superposisi kuantum dan Entanglement menciptakan daya komputasi yang sangat ditingkatkan. Dimana sebuah register 2-bit di komputer biasa dapat menyimpan hanya satu dari empat konfigurasi biner (00, 01, 10, atau 11) pada waktu tertentu, register 2-qubit dalam sebuah komputer kuantum dapat menyimpan semua empat nomor secara bersamaan, karena qubit masing-masing mewakili dua nilai. Jika lebih qubit ditambahkan, kapasitas meningkat diperluas secara eksponensial.
C. Pengoperasian data qubit
Qubit (Kuantum Bit) merupakan mitra dalam komputasi kuantum dengan digit biner atau bit dari komputasi klasik. Qubit adalah unit dasar informasi dalam komputer kuantum. Dalam komputer kuantum, sejumlah partikel elemental seperti elektron atau foton dapat digunakan, baik dengan biaya maupun polarisasi yang bertindak sebagai representasi dari 0 dan/atau 1. Setiap partikel-partikel ini dikenal sebagai qubit. Sifat dan perilaku partikel-partikel ini membentuk dasar dari komputasi kuantum.
Bit digambarkan oleh status 0 atau 1. Begitu pula dengan qubit yang digambarkan oleh status quantum. Dua status quantum yang potensial untuk qubit ekuivalen dengan 0 dan 1 bit klasik. Namun, dalam mekanika quantum, objek apapun yang memiliki dua status berbeda pasti memiliki rangkaian status potensial lain atau disebut dengan superposisi yang menjerat kedua status hingga derajat bermacam-macam.
D. Quantum Gates
Quantum Gates adalah sebuah gerbang kuantum yang dimana berfungsi mengoperasikan bit yang terdiri dari 0 dan 1 menjadi qubits. dengan demikian Quantum gates mempercepat banyaknya perhitungan bit pada waktu bersamaan. Quantum Gates adalah blok bangunan sirkuit kuantum, seperti klasik gerbang logika yang untuk sirkuit digital konvensional.
Quantum Gates / Gerbang Quantum merupakan sebuah aturan logika / gerbang logika yang berlaku pada quantum computing. Prinsip kerja dari quantum gates hampir sama dengan gerbang logika pada komputer digital. Jika pada komputer digital terdapat beberapa operasi logika seperti AND, OR, NOT, pada quantum computing gerbang quantum terdiri dari beberapa bilangan qubits, sehingga quantum gates lebih susah untuk dihitung daripada gerang logika pada komputer digital.
Quantum Logic Gates, Prosedur berikut menunjukkan bagaimana cara untuk membuat sirkuit reversibel yang mensimulasikan dan sirkuit ireversibel sementara untuk membuat penghematan yang besar dalam jumlah ancillae yang digunakan.
Pertama mensimulasikan gerbang di babak pertama tingkat.
Jauhkan hasil gerbang di tingkat d / 2 secara terpisah.
Bersihkan bit ancillae.
Gunakan mereka untuk mensimulasikan gerbang di babak kedua tingkat.
Setelah menghitung output, membersihkan bit ancillae.
Bersihkan hasil tingkat d / 2.
Sekarang kita telah melihat gerbang reversibel ireversibel klasik dan klasik, memiliki konteks yang lebih baik untuk menghargai fungsi dari gerbang kuantum. Sama seperti setiap perhitungan klasik dapat dipecah menjadi urutan klasik gerbang logika yang bertindak hanya pada bit klasik pada satu waktu, sehingga juga bisa setiap kuantum perhitungan dapat dipecah menjadi urutan gerbang logika kuantum yang bekerja pada hanya beberapa qubit pada suatu waktu. Perbedaan utama adalah bahwa gerbang logika klasik memanipulasi nilai bit klasik, 0 atau 1, gerbang kuantum dapat sewenang-wenang memanipulasi nilai kuantum multi-partite termasuk superposisi dari komputasi dasar yang juga dilibatkan. Jadi gerbang logika kuantum perhitungannya jauh lebih bervariasi daripada gerbang logika perhitungan klasik.
Untuk memanipulasi sebuah qubit, maka menggunakan Quantum Gates (Gerbang Kuantum). Cara kerjanya yaitu sebuah gerbang kuantum bekerja mirip dengan gerbang logika klasik. Gerbang logika klasik mengambil bit sebagai input, mengevaluasi dan memproses input dan menghasilkan bit baru sebagai output.
Tidak seperti banyak gerbang logika klasik, logika kuantum gerbang reversibel . Namun, adalah mungkin untuk melakukan komputasi klasik menggunakan gerbang hanya reversibel. Sebagai contoh, reversibel gerbang Toffoli dapat melaksanakan semua fungsi Boolean. Gerbang ini memiliki setara kuantum langsung, menunjukkan bahwa sirkuit kuantum dapat melakukan semua operasi yang dilakukan oleh sirkuit klasik.
Quantum gerbang logika yang diwakili oleh matriks kesatuan . Gerbang kuantum yang paling umum beroperasi pada ruang satu atau dua qubit, seperti biasa klasik gerbang logika beroperasi pada satu atau dua bit. Ini berarti bahwa sebagai matriks, gerbang kuantum dapat dijelaskan oleh 2 × 2 atau 4 × 4 matriks kesatuan.
E. Algoritma Shor
Algoritma Shor adalah contoh lanjutan paradigma dasar (berapa banyak waktu komputasi diperlukan untuk menemukan faktor bilangan bulat n-bit?), tapi algoritma ini tampak terisolir dari kebanyakan temuan lain ilmu informasi quantum. Sekilas, itu cuma seperti trik pemrograman cerdik dengan signifikansi fundamental yang kecil. Penampilan tersebut menipu; para periset telah menunjukkan bahwa algoritma Shor bisa ditafsirkan sebagai contoh prosedur untuk menetapkan level energi sistem quantum, sebuah proses yang fundamental. Seiring waktu berjalan dan kita mengisi lebih banyak pada peta, semestinya kian mudah memahami prinsip-prinsip yang mendasari algortima Shor dan algoritma quantum lainnya
Sebagai contoh Algoritma Shor yang paling sederhana adalah menemukan faktor-faktor untuk bilangan 15, di mana membutuhkan sebuah komputer kuantum dengan tujuh qubit. Para ahli kimia mendesain dan menciptakan sebuah molekul yang memiliki tujuh putaran nukleus. Nukleus dari lima atom fluorin dan dua atom karbon yang dapat berinteraksi satu dengan yang lain sebagai qubit, dapat diprogram dengan menggunakan denyut-denyut frekuensi radio dan dapat dideteksi melalui peralatan resonansi magnetis nuklir (nuclear magnetic resonance, atau NMR) yang mirip dengan yang banyak digunakan di rumah-rumah sakit dan laboratorium-laboratorium kimia.
Para ilmuwan IBM mengontrol sebuah tabung kecil (vial) yang berisikan satu miliar-miliar (10 pangkat 18) dari molekul-molekul ini untuk mengeksekusi algoritma Shor dan mengidentifikasikan secara tepat 3 dan 5 sebagai faktor 15. Meskipun jawaban ini mungkin kelihatan sangat sepele, kontrol yang dibutuhkan untuk mengatur tujuh putaran dalam kalkulasi ini menjadikan komputasi kuantum ini komputasi yang paling rumit yang pernah dijalankan hingga saat ini.
Kemajuan teknologi dibidang komputer semakin cepat, processor yang ada pada saat ini hampir mencapai perkembangan yang maksimal, sehingga jumlah transistor yang ditanamkan pada sebuah processor semakin padat. Maka dari itu, para ilmuan mengembangkan teknologi baru bernama quantum computing, dengan adanya quantum computing ini, kecepatan komputer bisa beberapa kali lipat dari komputer digital biasa, sehingga quantum computing bisa dibilang merupakan sebuah teknologi masa depan di dunia teknologi komputer
Referensi :
[1] Faza, Septiana.2016.Pengantar Quantum Computation.Diambil dari: http://septianza.blogspot.com/2016/05/pengantar-quantum-computation.html.(19 mei 2019 jam 11:30 WIB).
[2] Alfianita, Ulfa.2016. Pengoperasian data qubit.dari: http://ulfalfianita.blogspot.com/2016/04/pengoprasian-data-qubit-quantum-gates.html. (19 mei 2019 jam 11:30 WIB).
[3] Abraham Yoseph, Timothy.2016.Quantum gates.Diambil dari: http://timothyayoseph.blogspot.com/2016/05/quantum-gates.html.(19 mei 2019 jam 11:30 WIB).
Tidak ada komentar:
Posting Komentar